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Yang-Baxter Equation

A set-theoretic solution to the Yang-Baxter equation is a set B and a
function R : B × B → B × B such that

R12R23R12 = R23R12R23

holds, where Rij : B × B × B → B × B × B is R applied to the i th and j th

factors.

Example
Let B be any set, and R(x , y) = (y , x), x , y ∈ B.

R12R23R12(x , y , z) = R12R23(y , x , z) = R12(y , z, x) = (z, y , x)
R23R12R23(x , y , z) = R23R12(x , z, y) = R23(z, x , y) = (z, y , x).

Alan Koch (Agnes Scott College) 4 / 40



R12R23R12 = R23R12R23

Example

Let B be any group, R(x , y) = (y , y−1xy).

R12R23R12(x , y , z) = R12R23(y , y−1xy , z)

= R12(y , z, z−1y−1xyz)

= (z, z−1yz, z−1y−1xyz)

R23R12R23(x , y , z) = R23R12(x , z, z−1yz)

= R23(z, z−1xz, z−1yz)

= (z, z−1yz, (z−1yz)−1z−1xzz−1yz)

= (z, z−1yz, z−1y−1xyz).

Note that if B is abelian, then this is the previous example.
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R(1)(x , y) = (y , x), R(2)(x , y) = (y , y−1xy)

Let R be a solution to the YBE, and write

R(x , y) = (σx(y), σy (x)).

We say R is:

non-degenerate if σx , σy : B → B are bijections.
involutive if R2 = 1B.

Both examples above are non-degenerate, R(1) is involutive, but

R(2)(R(2)(x , y)) = R(2)(y , y−1xy) = (y−1xy , y−1x−1yxy),

so R(2) is not involutive unless B is abelian.
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(Skew left) braces

Skew left braces can be used to construct non-degenerate solutions to
the YBE.

A skew left brace is a triple B = (B, ·, ◦) where
(B, ·) is a group: the inverse to x is x−1 and we write x · y as xy
unless it creates confusion.
(B, ◦) is a group: the inverse to x is x .
For all x , y , z ∈ B the following identity holds, which we call the
brace relation:

x ◦ (yz) = (x ◦ y)x−1(x ◦ z).

In this talk, we will abbreviate “skew left brace” with “brace”.

Fact. The groups (B, ·) and (B, ◦) share the same identity 1B.
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Notation, notation

There does not yet appear to be a uniform notation:

Guarnieri and Vendramin, 2016 (arXiv): (B, ·, ◦).
Bachiller, 2016 (arXiv): (B, ?, ·).
Childs, 2017 (NYJM): (G, ·, ◦).
Smoktunowicz, Vendramin, and Byott, 2017 (arXiv): (A, ·, ◦).
Zenouz, 2018 (arXiv): (B,⊕,�).
Vendramin, 2018 (arXiv): (B,+, ◦).
Konovalov, Smoktunowicz, and Vendramin, 2018 (arXiv): (A, ◦,+),
which puts the operations in reverse order.
Childs, 2019 (arXiv): (G, ◦, ?) order of the operations irrelevant
(bi-skew braces–coming tomorrow!).
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x ◦ (yz) = (x ◦ y)x−1(x ◦ z)

Some examples:

(B, ·) any group, x ◦ y = xy . We call this “the” trivial brace.
(B, ·) any group, x ◦ y = yx . We call this “the” almost trivial brace.
(B, ·) = Sn, n ≥ 4, τ ∈ An, τ

2 = 1, and

σ ◦ π =

{
σπ σ ∈ An
στπτ σ 6∈ An

.

Note (B, ◦) ∼= Sn.
(B, ·) = 〈r , s : r4 = s2 = rsrs = 1〉 ∼= D4 with

x ◦ y =

{
xy x or y ∈ 〈r〉
r2xy x , y 6∈ 〈r〉 .

Note (B, ◦) ∼= Q8.

Alan Koch (Agnes Scott College) 9 / 40



Connection to the Yang-Baxter Equation

A brace B = (B, ·, ◦) gives a non-degenerate set-theoretic solution to
the YBE: for x , y ∈ B,

RB(x , y) =
(

x−1(x ◦ y), x−1(x ◦ y) ◦ x ◦ y
)
.

Exercise: RB is involutive iff (B, ·) is abelian.

Example (trivial brace)

RB(x , y) = (y , y−1xy).

Example (almost trivial brace)

RB(x , y) = (x−1yx , y).
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Connection with Hopf-Galois theory

Hopf-Galois structures on Galois field extensions give braces, and
conversely.

Let (G, ∗G) be the Galois group of an extension L/K , let N ≤ Perm(G)
be regular and G-stable (i.e., normalized by conjugation by
λ(G) ≤ Perm(G)).

Let a : N → G be the bijection given by a(η) = η[1G].

Define, for η, π ∈ N,

η ◦ π = a−1(a(η) ∗G a(π)).

Set B = N. Then B := (B, ·, ◦) is a brace with (B, ·) = N, and
(B, ◦) ∼= (G, ∗G) via the isomorphism a.
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Alternatively

Given (G, ∗G), (N, ∗N) as above, let (B, ◦) = (G, ∗G) and define

g · h = a(a−1(g) ∗N a−1(h)).

Then Balt := (B, ·, ◦) is a brace with (B, ◦) = (G, ∗G), and
(B, ·) ∼= (N, ∗N) via the isomorphism a−1.

In fact, the map a : B→ Balt is a brace isomorphism (bijection,
preserves both operations).
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HGS give braces

The correspondence

{Hopf-Galois structures on L/K} → {Braces (B, ·, ◦) with (B, ◦) ∼= G}

is surjective but not injective.

Given a regular, G-stable subgroup N ≤ Perm(G), denote its
corresponding brace by B(N).
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Motivation

Let L/K be Galois, group G.

Let N ≤ Perm(G) be regular and G-stable.

Then N induces a Hopf-Galois structure on L/K .

Additionally, let

N ′ = CentPerm(G)(N) = {η′ ∈ Perm(G) : η′η = ηη′ for all η ∈ N}.

Then N ′ ∼= N is regular and G-stable, giving a HGS on L/K , different
from the HGS that N gives if N is nonabelian.

Question. How do B(N) and B(N ′) compare?
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Comparing braces

Recall [Greither-Pareigis]: N ′ = {φη : η ∈ N}, where η[g] = µg[η[1G]]
and µg ∈ N is uniquely determined by µg[1] = g.

Also, φηφπ = φπη, and the map: η 7→ φη−1 : N → N ′ is an isomorphism.

Let a′ : N ′ → G be the bijection φη 7→ φη[1G]. Then

a′(φη) = φη[1G] = µ1[η[1G]] = η[1G] = a(η).
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a′(φη) = a(η)

Then

φη ◦′ φπ : = (a′)−1 (a′(φη) ∗G a′(φπ)
)

= (a′)−1(a(η) ∗G a(π))

= (a′)−1(a(η ◦ π))
= φη◦π.

Then B(N ′) = (N ′, ·N′ , ◦′).

By identifying N ′ with N via the bijection φη 7→ η, we see that
B(N ′) ∼= (N, ·′, ◦) where

η ·′ π = πη.
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The opposite brace

Let B = (B, ·, ◦) be any brace, and let

x ·′ y = yx .

Then B′ := (B, ·′, ◦) is called the opposite brace to B.

Note: it is easy to show that the brace relation holds on B′.
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Historical note

In March, 2019 I gave a different definition for B′, call it B∗.

B∗ = (B, ·, ◦′) where

x ◦′ y =
(

x−1 ◦ y−1
)−1

= x(x−1 ◦ y)x .

One can show that the map B → B given by x 7→ x−1 is an
isomorphism of braces B∗ → B′.

The May opposite is an easier reformulation of the March opposite.
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Some properties

(B′)′ ∼= B.

If (B, ·) is abelian, B′ ∼= B.

(B, ·′) has the same identity and inverses as (B, ·).

If φ : B1 → B2 is a morphism of braces, then it is also a morphism
B′1 → B′2 of opposite braces since

φ(x ·′ y) = φ(yx) = φ(y)φ(x) = φ(x) ·′ φ(y).
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A simple example

Suppose B = (B, ·, ·) is the trivial brace.

Then B′ = (B, ·′, ·) is isomorphic to the almost trivial brace (B, ·, ·′) by
the inverse map ι : (B, ·, ·′)→ (B, ·′, ·), ι(x) = x−1:

ι(x · y) = (x · y)−1 = y−1 · x−1 = ι(x) ·′ ι(y)
ι(x ◦ y) = ι(y · x) = (y · x)−1 = x−1 · y−1 = ι(x) ◦ ι(y).

Note. The regular subgroups of Perm(G) which produce B and B′ are
λ(G) and ρ(G) respectively.

Alan Koch (Agnes Scott College) 21 / 40



Outline

1 Background

2 The Opposite Brace

3 Applications

4 Self-Opposite Braces

5 Open Questions

Alan Koch (Agnes Scott College) 22 / 40



Application #1: Back to YBE

If B′ 6∼= B, a brace now gives two set-theoretic solutions to the YBE:

RB(x , y) =
(

x−1(x ◦ y), x−1(x ◦ y) ◦ x ◦ y
)

RB′(x , y) =
(

x−1 ·′ (x ◦ y), x−1 ·′ (x ◦ y) ◦ x ◦ y
)

=
(
(x ◦ y)x−1, (x ◦ y)x−1 ◦ x ◦ y

)
.
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RB(x , y) =
(

x−1(x ◦ y), x−1(x ◦ y) ◦ x ◦ y
)

Example
Let B be the trivial brace.
Then:

RB(x , y) = (y , y−1xy)

RB′(x , y) = (xyx−1, x).

Note. In this example, R−1
B = RB′ .
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RB(x , y) =
(

x−1(x ◦ y), x−1(x ◦ y) ◦ x ◦ y
)

Example

(B, ·) = 〈r , s : r4 = s2 = rsrs = 1〉 ∼= D4 with

x ◦ y =

{
xy x or y ∈ 〈r〉
r2xy x , y 6∈ 〈r〉 .

Then:

RB(x , y) =
{

(y , y−1xy) x ∈ 〈r〉 or y ∈ 〈r〉
(r2y , r2y−1xy) x , y 6∈ 〈r〉 ,

RB′(x , y) =
{

(xyx−1, x) x ∈ 〈r〉 or y ∈ 〈r〉
(r2xyx−1, r2x) x , y 6∈ 〈r〉 .

Remark. It takes more work, but it can be shown that R−1
B = RB′ .
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But...

Recall (B, ·) = Sn, n ≥ 4, τ ∈ An, τ
2 = 1, and

σ ◦ π =

{
σπ σ ∈ An
στπτ σ 6∈ An

.

Suppose τ = (12)(34). Then

RB′RB((12), (123)) = RB′((142), (24)) = ((24), (132))

So R−1
B 6= RB′ in general.
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Application #2: Back to HGS

Let L/K be Galois, group G, and suppose H is a Hopf algebra which
acts on L such that L/K is a Hopf-Galois extension.

Then each sub-Hopf algebra of H corresponds to an intermediate field
of L/K .

This assignment is injective, but not necessarily surjective
[Greither-Pareigis].

Let B = (B, ·, ◦) be the corresponding brace.

Last year, in Omaha, Lindsay discussed the image of this
correspondence using “◦-stable subgroups" of the B.
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◦-stable subgroups: What Lindsay did

A subgroup C ≤ (B, ·) is ◦-stable if, for all c ∈ C, x ∈ B,

(x ◦ c)x−1 ∈ C.

A ◦-stable subgroup C of (B, ·) is also a subgroup of (B, ◦), so (C, ·, ◦)
is a sub-brace of B.

Sub-Hopf algebras, hence the intermediate fields obtained via H, are
in 1-1 correspondence with ◦-stable subgroups.
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Left ideals: What Bachiller did

A subgroup D ≤ (B, ·) is a left ideal if, for all d ∈ D, x ∈ B,

x−1(x ◦ d) ∈ D.

A left ideal is also a subgroup of (B, ◦), hence a sub-brace.

People seem to care about these–for example, there’s a “YangBaxter”
GAP package with commands such as LeftIdeals, which computes all
of the left ideals of a given brace.
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(x ◦ c)x−1 ∈ C, x−1(x ◦ d) ∈ D

Clearly:

Proposition
C is a ◦-stable subgroup in B iff it is a left ideal in B′.

Wild idea.
If we were to re-define the brace corresponding to (N, ∗N) ≤ Perm(G)
to have dot operation

η · π = π ∗N η

and the circle operation as before, then the left ideals would give the
intermediate fields directly.
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Abelian case

We say B = (B, ·, ◦) is abelian if (B, ·) is abelian. (Called a “left brace”
in the literature.)

If B is abelian, then the identity map is an isomorphism (B, ·)→ (B, ·′)
which respects ◦.

Hence B′ ∼= B.

More generally (i.e., B not necessarily abelian), whenever B′ ∼= B we
say B is self-opposite.

If B is self-opposite:
1 Only one solution to YBE.
2 Intermediate fields found using left ideals.

Question. Are there non-abelian self-opposite braces?
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Yes.

Let (G, ·) be any group.

Let B = G ×G and define

(x1, x2) ◦ (y1, y2) = (x1y1, y2x2).

It is easy to show (B, ·, ◦) is a brace and that

T : B → B, T (x1, x2) = (x2, x1)

is a brace isomorphism B′ → B.

More generally, for any brace B we have

(B×B′)′ ∼= B′ ×B ∼= B×B′.
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When is B self-opposite?

One strategy: compute Aut(B, ◦), and for each ϕ ∈ Aut(B, ◦) determine
whether ϕ(xy) = ϕ(y)ϕ(x).

Example
For n ≥ 4, n 6= 6, let B = (B, ·, ◦) with (B, ·) = Sn and

σ ◦ π =

{
σπ σ ∈ An
στπτ σ 6∈ An

.

All automorphisms of (B, ◦) ∼= Sn are inner. Let ϕ(σ) = γσγ−1, γ ∈ Sn.
Then

ϕ((123) · (12)) = ϕ((13)) = γ(13)γ−1

ϕ((123)) ·′ ϕ((12)) = (γ(12)γ−1) ·′ (γ(123)γ−1)

= (γ(123)γ−1) · (γ(12)γ−1) = γ(23)γ−1,

so ϕ is not an isomorphism B→ B′ and B is not self-opposite.
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Self opposite investigation: L-pairs and R-pairs

We say (x , y) ∈ B × B is an L-pair of B if x ◦ y = xy , equivalently, y is
fixed by the bijection Lx given by

Lx(y) = x−1(x ◦ y).

Similarly, if x ◦ y = yx we call (x , y) an R-pair of B.

Clearly, an L-pair of B is an R-pair of B′ and vice versa.

Thus, if B is self-opposite, |L| = |R|.
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An example

As before, let (B, ·) = 〈r , s : r4 = s2 = rsrs = 1〉 ∼= D4 with

x ◦ y =

{
xy x or y ∈ 〈r〉
r2xy x , y 6∈ 〈r〉 .

Then |L| = 48 (trivial computation).

What is |R|?

r i ◦ r j = r i+j = r j r i for all i , j : 16 pairs
r i ◦ r js = r i+js = r jsr i iff i is even: 8 pairs
r is ◦ r j = r i−js = r j r is iff j is even: 8 pairs
r is ◦ r js = r2+i−j = r jsr is iff i 6≡ j (mod 2): 8 pairs.

So |R| = 40 and B is not self-opposite.
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n − 1 Questions

1 Is there an elegant way to relate RB and RB′?
Elegant: Given RB(x , y) = (u, v), a nice formula to RB′(x , y) in
terms of u and v .
(Failed conjecture: RB′ = TRBT , T (x , y) = (y , x).)
Best I have right now: RB′(x , y) = (u ◦ v)x−1, (u ◦ v)x−1 ◦ u ◦ v).

2 Can we develop “nice” necessary and sufficient conditions to
determine whether B is self-opposite?

3 Do Hopf Galois structures which correspond to self-opposite
braces have interesting properties?
(For example: if B is self-opposite, intermediate fields correspond
to left ideals.)

4 Is there any value to the “classic” definition of opposite, B∗?
Philosophically:

B,B′: fix G, vary N.
B,B∗: fix N, vary G.
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Last question

5 The construction of B′ was motivated to understand the opposite
HGS given by N ′–specifically, the Hopf algebra structure of L[N ′]G.
What insight does B′ give us?

We’ll talk about this again on Thursday.
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Thank you.
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